Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
Methods in Molecular Biology ; 2621:v, 2023.
Article in English | EMBASE | ID: covidwho-2317522
2.
Front Virol ; 3: 1128253, 2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2302098

ABSTRACT

The antibody response to SARS-CoV-2 shows biased immunoglobulin heavy chain variable (IGHV) gene usage, allowing definition of genetic signatures for some classes of neutralizing antibodies. We investigated IGHV gene usage frequencies by sorting spike-specific single memory B cells from individuals infected with SARS-CoV-2 early in the pandemic. From two study participants and 703 spikespecific B cells, the most used genes were IGHV1-69, IGHV3-30-3, and IGHV3-30. Here, we focused on the IGHV3-30 group of genes and an IGHV3-30-3-using ultrapotent neutralizing monoclonal antibody, CAB-F52, which displayed broad neutralizing activity also in its germline-reverted form. IGHV3-30-3 is encoded by a region of the IGH locus that is highly variable at both the allelic and structural levels. Using personalized IG genotyping, we found that 4 of 14 study participants lacked the IGHV3-30-3 gene on both chromosomes, raising the question if other, highly similar IGHV genes could substitute for IGHV3-30-3 in persons lacking this gene. In the context of CAB-F52, we found that none of the tested IGHV3-33 alleles, but several IGHV3-30 alleles could substitute for IGHV3-30-3, suggesting functional redundancy between the highly homologous IGHV3-30 and IGHV3-30-3 genes for this antibody.

3.
Vaccines (Basel) ; 11(2)2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2247859

ABSTRACT

Coronavirus disease 2019 (COVID-19), the agent behind the worst global pandemic of the 21st century (COVID-19), is primarily a respiratory-disease-causing virus called SARS-CoV-2 that is responsible for millions of new cases (incidence) and deaths (mortalities) worldwide. Many factors have played a role in the differential morbidity and mortality experienced by nations and ethnicities against SARS-CoV-2, such as the quality of primary medical health facilities or enabling economies. At the same time, the most important variable, i.e., the subsequent ability of individuals to be immunologically sensitive or resistant to the infection, has not been properly discussed before. Despite having excellent medical facilities, an astounding issue arose when some developed countries experienced higher morbidity and mortality compared with their relatively underdeveloped counterparts. Hence, this investigative review attempts to analyze the issue from an angle of previously undiscussed genetic, epigenetic, and molecular immune resistance mechanisms in correlation with the pathophysiology of SARS-CoV-2 and varied ethnicity-based immunological responses against it. The biological factors discussed here include the overall landscape of human microbiota, endogenous retroviral genes spliced into the human genome, and copy number variation, and how they could modulate the innate and adaptive immune systems that put a certain ethnic genetic architecture at a higher risk of SARS-CoV-2 infection than others. Considering an array of these factors in their entirety may help explain the geographic disparity of disease incidence, severity, and subsequent mortality associated with the disease while at the same time encouraging scientists to design new experimental approaches to investigation.

4.
Immunity ; 56(1): 193-206.e7, 2023 01 10.
Article in English | MEDLINE | ID: covidwho-2149893

ABSTRACT

The human immunoglobulin heavy-chain (IGH) locus is exceptionally polymorphic, with high levels of allelic and structural variation. Thus, germline IGH genotypes are personal, which may influence responses to infection and vaccination. For an improved understanding of inter-individual differences in antibody responses, we isolated SARS-CoV-2 spike-specific monoclonal antibodies from convalescent health care workers, focusing on the IGHV1-69 gene, which has the highest level of allelic variation of all IGHV genes. The IGHV1-69∗20-using CAB-I47 antibody and two similar antibodies isolated from an independent donor were critically dependent on allele usage. Neutralization was retained when reverting the V region to the germline IGHV1-69∗20 allele but lost when reverting to other IGHV1-69 alleles. Structural data confirmed that two germline-encoded polymorphisms, R50 and F55, in the IGHV1-69 gene were required for high-affinity receptor-binding domain interaction. These results demonstrate that polymorphisms in IGH genes can influence the function of SARS-CoV-2 neutralizing antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunoglobulin Heavy Chains/genetics , COVID-19/genetics , Antibodies, Viral , Polymorphism, Genetic , Antibodies, Neutralizing , Germ Cells
5.
Annals of Oncology ; 33:S1050, 2022.
Article in English | EMBASE | ID: covidwho-2041544

ABSTRACT

Background: The value of increased HER2 gene copy number (GCN) in NSCLC is unclear. In this study we defined its frequency and characterized a cohort of patients harboring it. Methods: Patients with stage IIIB/IV NSCLC enrolled in the Gustave Roussy MSN study (NCT02105168) between Oct. 2009 and Feb. 2016 were screened by FISH (positivity defined as HER2 GCN to centromeres ratio ≥ 2) and tested for other molecular alterations. Descriptive analyses of clinical-pathological data were performed, progression-free survival (PFS) and overall survival (OS) were estimated by Kaplan-Meier method. Results: HER2 FISH tested positive in 22 of 250 screened patients (9%). Median age was 60 years (range 47-80), 68% (n=15) were male, 91% (n=20) were current or former tobacco smokers (median exposure 47 pack-year), 64% (n=14) had adenocarcinoma, 18% (n=4) squamous cell and 18% (n=4) large cell carcinoma. 91% (n=20) had an ECOG PS of 0 or 1. Stage IV with extra-thoracic involvement was the most common clinical presentation (64%, n=14). Overall, 95% of patients (n=21) had 1 or 2 metastatic sites at diagnosis (bone 32%, lung 27%, nodes 18%, liver 18%, brain 18%). In 9 patients (41%) 12 concurrent molecular alterations were detected: 5 KRAS mutation (3 G12C, 1 G12D, 1 G61H), 2 HER2 exon 20 insertion, 1 EGFR exon 19 deletion, 1 BRAF V600E mutation, 1 ALK rearrangement, 1 FGFR1 and 1 MET amplification. 18 patients received first-line platinum-based chemotherapy, with 33% (95% CI 16-56) objective response rate and 83% (95% CI 61-94) disease control rate. After a median follow-up of 28 months (95% CI 23-45), median PFS and OS were 5.9 (95% CI 3.4-11.0) and 15.3 (95% CI 10.3-NR) months, respectively. Median PFS was longer in patients with higher GCN. As further line of treatment, 5 patients received trastuzumab: 4 in combination with chemotherapy and 1 as monotherapy, with 1 stabilization of disease as best response. 3 patients received nivolumab (1 partial response and 1 stable disease) and 3 a targeted therapy (anti ALK, EGFR, BRAF). Conclusions: Increased HER2 GCN was found in 9% of patients with unresectable NSCLC, was not correlated to particular clinical characteristics, but frequently occurred with other molecular alterations. Its clinical actionability and the correlation with protein expression deserve further characterization. Clinical trial identification: NCT02105168. Legal entity responsible for the study: Gustave Roussy. Funding: Has not received any funding. Disclosure: M. Tagliamento: Other, Personal, Other, Travel grants: Roche, Bristol-Myers Squibb, AstraZeneca, Takeda, Eli Lilly;Other, Personal, Writing Engagements, Honoraria as medical writer: Novartis, Amgen. E. Auclin: Financial Interests, Personal, Advisory Board: Amgen, Sanofi. E. Rouleau: Financial Interests, Institutional, Advisory Board: AstraZeneca, Roche, Amgen, GSK;Financial Interests, Institutional, Invited Speaker: Clovis, BMS;Financial Interests, Institutional, Funding, Data base: AstraZeneca. A. Bayle: Non-Financial Interests, Institutional, Other, Principal/Sub-Investigator of Clinical Trials: AbbVie, Adaptimmune, Adlai Nortye USA Inc, Aduro Biotech, Agios Pharmaceuticals, Amgen, Argen-X Bvba, Astex Pharmaceuticals, AstraZeneca Ab, Aveo, Basilea Pharmaceutica International Ltd, Bayer Healthcare Ag, Bbb Technologies Bv, BeiGene, BicycleTx Ltd, Non-Financial Interests, Institutional, Research Grant: AstraZeneca, BMS, Boehringer Ingelheim, GSK, INCA, Janssen Cilag, Merck, Novartis, Pfizer, Roche, Sanofi;Financial Interests, Institutional, Other, drug supplied: AstraZeneca, Bayer, BMS, Boehringer Ingelheim, GSK, MedImmune, Merck, NH TherAGuiX, Pfizer, Roche. F. Barlesi: Financial Interests, Personal, Advisory Board: AstraZeneca, Bayer, Bristol Myers Squibb, Boehringer Ingelheim, Eli Lilly Oncology, F. Hoffmann–La Roche Ltd, Novartis, Merck, Mirati, MSD, Pierre Fabre, Pfizer, Sanofi-Aventis, Seattle Genetics, Takeda;Non-Financial Interests, Principal Investigator: AstraZeneca, BMS, Merck, Pierre Fabre, F. Hoffmann-La Roche Ltd. D. Planchard: Financial I terests, Personal, Advisory Board: AstraZeneca, BMS, Merck, Novartis, Pfizer, Roche, Samsung, Celgene, AbbVie, Daiichi Sankyo, Janssen;Financial Interests, Personal, Invited Speaker: AstraZeneca, Novartis, Pfizer, priME Oncology, Peer CME, Samsung, AbbVie, Janssen;Non-Financial Interests, Principal Investigator, Institutional financial interests: AstraZeneca, BMS, Merck, Novartis, Pfizer, Roche, Daiichi Sankyo, Sanofi-Aventis, Pierre Fabre;Non-Financial Interests, Principal Investigator: AbbVie, Sanofi, Janssen. B. Besse: Financial Interests, Institutional, Funding: 4D Pharma, AbbVie, Amgen, Aptitude Health, AstraZeneca, BeiGene, Blueprint Medicines, Boehringer Ingelheim, Celgene, Cergentis, Cristal Therapeutics, Daiichi Sankyo, Eli Lilly, GSK, Janssen, Onxeo, Ose Immunotherapeutics, Pfizer, Roche-Genentech, Sanofi, Takeda, Tolero Pharmaceuticals;Financial Interests, Institutional, Research Grant: Chugai Pharmaceutical, EISAI, Genzyme Corporation, Inivata, Ipsen, Turning Point Therapeutics. L. Mezquita: Financial Interests, Personal, Advisory Board: Takeda, AstraZeneca, Roche;Financial Interests, Personal, Invited Speaker: Roche, BMS, AstraZeneca, Takeda;Financial Interests, Personal, Research Grant, SEOM Beca Retorno 2019: BI;Financial Interests, Personal, Research Grant, ESMO TR Research Fellowship 2019: BMS;Financial Interests, Institutional, Research Grant, COVID research Grant: Amgen;Financial Interests, Institutional, Invited Speaker: Inivata, Stilla. All other authors have declared no conflicts of interest.

SELECTION OF CITATIONS
SEARCH DETAIL